Method of Selecting Training Sets to Build Compact and Efficient Statistical Language Model

نویسندگان

  • Keiji Yasuda
  • Hirofumi Yamamoto
  • Eiichiro Sumita
چکیده

For statistical language model training, target task matched corpora are required. However, training corpora sometimes include both target task matched and unmatched sentences. In such a case, training set selection is effective for both model size reduction and model performance improvement. In this paper, training set selection method for statistical language model training is described. The method provides two advantages for training a language model. One is its capacity to improve the language model performance, and the other is its capacity to reduce computational loads for the language model. The method has four steps. 1) Sentence clustering is applied to all available corpora. 2) Language models are trained on each cluster. 3) Perplexity on the development set is calculated using the language models. 4) For the final language model training, we use the clusters whose language models yield low perplexities. The experimental results we obtained indicate the language model trained on the data selected by our method gives lower perplexity on an open test set than a language model trained on all available corpora.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method of Selecting Training Data to Build a Compact and Efficient Translation Model

Target task matched parallel corpora are required for statistical translation model training. However, training corpora sometimes include both target task matched and unmatched sentences. In such a case, training set selection can reduce the size of the translation model. In this paper, we propose a training set selection method for translation model training using linear translation model inte...

متن کامل

The TCH machine translation system for IWSLT 2008

This paper reports on the first participation of TCH (Toshiba (China) Research and Development Center) at the IWSLT evaluation campaign. We participated in all the 5 translation tasks with Chinese as source language or target language. For Chinese-English and English-Chinese translation, we used hybrid systems that combine rule-based machine translation (RBMT) method and statistical machine tra...

متن کامل

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ALTERNATIVE MIXED INTEGER PROGRAMMING FOR FINDING EFFICIENT BCC UNIT

Data Envelopment Analysis (DEA) cannot provide adequate discrimination among efficient decision making units (DMUs). To discriminate these efficient DMUs is an interesting research subject. The purpose of this paper is to develop the mix integer linear model which was proposed by Foroughi (Foroughi A.A. A new mixed integer linear model for selecting the best decision making units in data envelo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007